Sub-riemannian Metrics and Isoperimetric Problems in the Contact Case
نویسندگان
چکیده
1. Invariants. A contact sub-Riemannian metric is a triple (X,∆, g) consisting of a (2n+ 1)-dimensional manifold X, a distribution ∆ on X, which is a contact structure, and a metric g on ∆. It defines a metric on X by measuring via g the length of smooth curves that are tangent to ∆. All the considerations in this paper are local: we consider only germs (X,∆, g)q0 at a fixed point q0. There are two canonical objects that are associated with (X,∆, g), modulo their sign: the “defining” one-form ω and the “characteristic” vector field ν: (i) Kerω = ∆, (dω)n|∆ = Volume, (ii) ω(ν) = 1, iνdω = 0, (1.1)
منابع مشابه
On the Dido Problem and Plane Isoperimetric Problems
This paper is a continuation of a series of papers, dealing with contact sub-Riemannian metrics onR3. We study the special case of contact metrics that correspond to isoperimetric problems on the plane. The purpose is to understand the nature of the corresponding optimal synthesis, at least locally. It is equivalent to studying the associated sub-Riemannian spheres of small radius. It appears t...
متن کاملun 2 00 4 On geodesic equivalence of Riemannian metrics and sub - Riemannian metrics on distributions of corank 1 Igor
The present paper is devoted to the problem of (local) geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on generic corank 1 distributions. Using Pontryagin Maximum Principle, we treat Riemannian and sub-Riemannian cases in an unified way and obtain some algebraic necessary conditions for the geodesic equivalence of (sub-)Riemannian metrics. In this way first we obtain a new...
متن کاملOn geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on distributions of corank 1
The present paper is devoted to the problem of (local) geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on generic corank 1 distributions. Using Pontryagin Maximum Principle, we treat Riemannian and sub-Riemannian cases in an unified way and obtain some algebraic necessary conditions for the geodesic equivalence of (sub-)Riemannian metrics. In this way first we obtain a new...
متن کاملOn Asymptotic Isoperimetric Constant of Tori
In this note we continue the study of asymptotic invariants of Riemannian tori (e.g. see [BuI] and references there). By asymptotic invariants we mean invariants which do not change under passing to finite covers. In [BuI] we show that the asymptotic volume growth of a Riemannian torus is at least as fast as that of a flat one. One may ask what are the possible values of “asymptotic isoperimetr...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کامل